

RIBATEJO - PORTUGAL

Precision Viticulture, State of the art and perspectives

adapted from

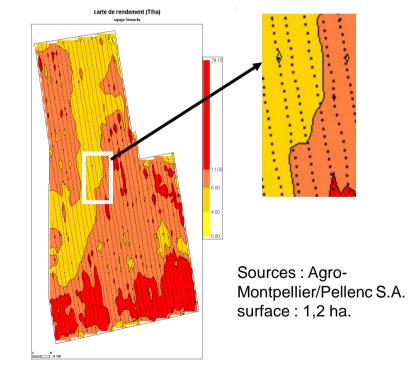
Viticulture de précision® : Etat des lieux dix ans après son avènement

byBruno TISSEYRE, UMR ITAP SupAgro/Irstea
Presented for

Introduction

2d PIC Ribatejo Portugal 5-6th june 2012

- 1990 Begining of precision agriculture
 - A significant development with cereals in France
 - (GPS guidance) 50 % des exploitations céréalières,
 - Support to N fertilization (600 000 ha using Remote Sensing),
- 2000 Adaptation to viticulture (VP)
 - 10 years of feed-back to identify:
 - failures and setbacks,
 - factors of adoption,
 - evolutions and perspectives,
 - issues for scientists and professionals.



First examples of embedded systems for VP

- First yield sensors provided by equipment manufacturers (in the same way as for cereals),
- A first revolution.
- Localisation by DGPS,
- Embedded measurement systems,
- Possibility of high resolution (m) mapping

Feed back

2d PIC Ribatejo Portugal 5-6th june 2012

A rather mixed review :

- Adoption by a few number of big companies
 (Southcorp- Australie, San Pedro-Chili, Raïmat/Torres-Espagne),
- Only one manufacturer (ATV),

- Whole fleet equiped in the same way,
- One specialist in geoscience (dedicated to data treatment and maintenance),
- Interest of executives and share-holders in terms of reporting tools,

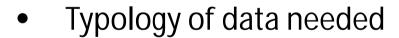
Feed back

2d PIC Ribatejo Portugal 5-6th june 2012

A rather low interest of other structures

- For traders/coop. wineries
 - Heterogeneity of supplies and types harvesters (the whole domain is not mapped),
 - Difficulty to collect and consolidate heterogeneous data,

For producers/vineyard

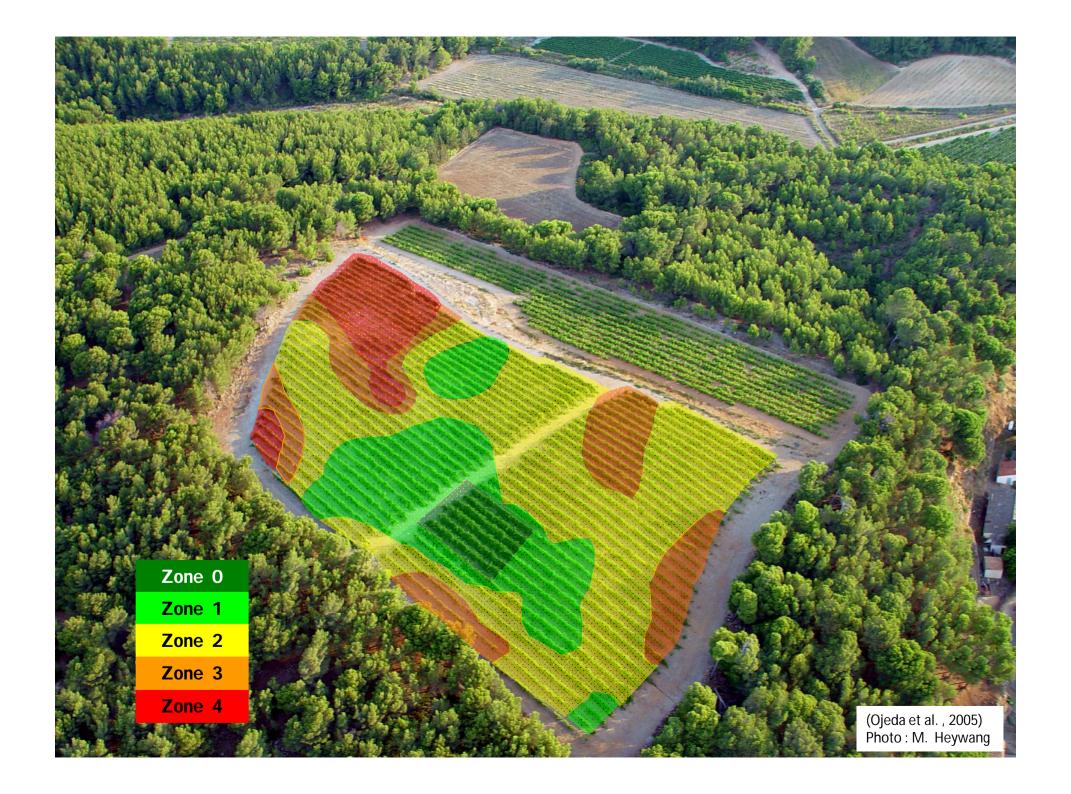

- Necessary skills and investments,
- Low value information of crop monitoring (end of production),
- No reference for the use of this information,
- Low interest for high added value vineyard (manual harvest).

2d PIC Ribatejo Portugal 5-6th june 2012

- New spécifications :
 - Getting data during the whole production cycle,
 - Building Decision Support tools.
- Common aspects
 - Geo-referenced data and time record,

- Spatially high resolution,
- Temporal high resolution,
- Intermediate tools.

2d PIC Ribatejo Portugal 5-6th june 2012 Spatially exhaustive information


 Vegetation mapping by remote sensing,
 Instant view of the whole production system (ex. Oenoview ®-ICV-Astrium)

Aerial photography, false color - 1 m², (source Oenoview, ICV, Astrium, Avion-Jaune, Pech-Rouge)

- Information during the production cycle,
- New applications
 - Plot sélection
 - Adapted management,
 - Adapted harvest,
 - Selective sampling,

Portugal 5-6th june 2012

2d PIC Ribatejo

Towards new observation systems

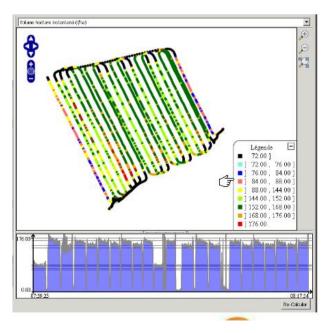
Spatially high resolution information

- Vegetation mapping by proxy-detection
 - grass management in vineyard
 - ultimately, real time adjustment of rates of herbicide

Drissi et al., 2009

Several commercial solutions

- Greenseeker™ (Ntech)
- Cropcircle ® (NZ)
- GrapeSense (Lincoln Venture-NZ)

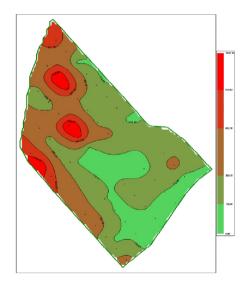

2d PIC Ribatejo Portugal 5-6th june 2012

- Spatially high resolution information
 - Phyto-product application follow-up and traceability
 - A posteriori checking of the spray results and spatial efficiency
 - expected lower environmental impact and economical savings

Tixad www.tixad.eu

Sources: IRSTEA, TICSAD

Towards new observation systems


Spatially high resolution information

- Mapping of soil conductivity,
 - Decision support for optimized sampling design before harvest
 - Decision support for crop management (plantation, treatment)

Géocarta

Sources: www.geocarta.net

2d PIC Ribatejo Portugal 5-6th june 2012

- Temporally exhaustive information spatially punctual
 - Follow-up of the production system (climate, soil water, water demand)
 - Multi-sensors network (GPRS, ZigBEE, etc.),
 - Water supply /water stress monitoring,

Many enterprises:

- Agriscope,
- Fruition science,
- TCSD,
- Verdtech, etc.

Hand-held sensors

- Non destructive grape maturity monitoring to decide on optimised harvesting date (Ex. Spectron)
- Vine physiological status monitoring for optimised application of factors of production (ex. Multiplex)
- Yield and quality prediction (ex. Qualiris grappe)

2d PIC Ribatejo Portugal 5-6th june 2012

SPECTRONTM
Pellenc, Cemagref, IFV

www.pellenc.com

Qualiris grappe TM

www.sodimel.fr

Multiplex TM Force-A

www.force-a.eu

And furthermore

Link with winery tools and information systems

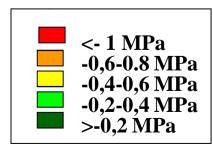
- grape quality monitoring at reception (Qualiris reception™) assess cleanliness, integrity and colour of the grapes

Qualiris reception TM

www.sodimel.fr

Measurement

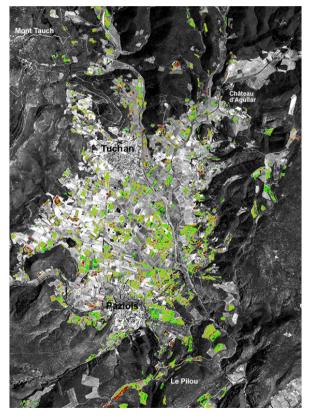
- Optical properties (ex Spectron),
- Remote sensing (ex Oenoview),


Embedded systems

- Spraying traceability (ex. Tixad),
- Smartphone applications (ex. smartGrape, Vinonomade)

Data processing and translation

- GeoFis (freeware for geodata processing),
- Spider (method of water stress interpolation),
- · Spatial sampling methods,



Ongoing research on VP

Pre-harvest grape quality monitoring

Oenoview

Operational constraints:

- 30 plots visited /day,
- Support with geolocallized Smartphone,
- Best localisation of measures?

Smartphone, Pocket-PC

Online sampling design

Conclusions

Issues of

- Spatial heterogeneity assessment (traceability, logistic)
- Vegetation mapping (crop management)
- Phyto-product application monitoring (Env & econ impacts)
- Soil mapping
- Follow-up of water and physiological status (water/N supply monitoring)
- Follow-up of production and quality (harvest forescast and wine quality monitoring)

Trend for hand-held, stand alone sensors

- High value information, rather expensive sensors vs.
- Simple lower value application available on Smartphone

- Joining geographic and temporal information
 - Interpolation
 - Sampling design
- Inter-operability
 - Communicating systems
 - Data exchange standards
 - Integration of new tools in existing systems,
- Links with robotics

Thank you for your attention

Contact : Nicolas Nguyen The nguyen-the@qualimediterranee.fr

Contact : Bruno Tisseyre tisseyre@supagro.inra.fr