RIBATEJO - PORTUGAL # VEGEPOLYS competitiveness cluster « Innovating breeding for food » **Cécile ABALAIN** cecile.abalain@vegepolys.eu Technical Innovation Director Marion CLOSIER international@vegepolys.eu International Project Manager (permanent contact: Pauline CAPUS) ### **VEGEPOLYS:** ### 3 main areas of innovation for plants with lower resource consumption or focused on diversification **Plant breeding** Plant protection and cropping systems Plants for health, well-being and human environment # Three main areas of innovation categorised as technological challenges (1/3) ### Plant Breeding The 4 challenges are categorised to guarantee adequate <u>productivity</u> and production <u>regularity</u>. All the markets incorporating plant production are targeted including the urban market. - 1st challenge: To create and manage in a sustainable manner varieties that are resistant or tolerant to bio-aggressors - 2nd challenge: To adapt the varieties to abiotic stresses, especially to climate change - 3rd challenge: To identify and select <u>high quality</u>, <u>original</u> characteristics appealing to producers, processors, distributors/marketers and consumers - 4th challenge: To optimise the plant creation processes by developing integrative approaches # Three main areas of innovation categorised as technological challenges (1/3) ### Plant protection and cropping systems 1st challenge: To develop knowledge of bio-aggressors and their interaction with the host and to formulate <u>reliable and rapid methods</u> of detection, diagnosis and evaluation of the plant resistance. #### - 2nd challenge: <u>To develop crop protection products with low risk</u> to man and the environment including <u>biocontrol agents</u> and reliable methods suitable for evaluating their efficency. - 3rd challenge: To develop global integrated protection strategies # Three main areas of innovation categorised as technological challenges (1/3) - Plants for health, well-being and human environment - 1st challenge: To develop <u>products from plants</u> dedicated to human and animal food/nutrition, health and well-being - 2nd challenge: To design plant-based <u>urbanised areas</u> and specific <u>management methods</u> which - reduce inputs - conserve resources - promote biodiversity and climate regulation, in order to improve the <u>well-being (physical, psychological) and lifestyle</u> of the population ## Plant breeding - The main research areas #### 1st TECHNOLOGICAL CHALLENGE To create and manage sustainably productive varieties that are resistant or tolerant to bio-aggressors | Synopsis | Research areas | |---|--| | To create varieties sustainably resistant to bio-aggressors | Characterisation and management of genetic resources Development of innovative aids to the selection of new varieties New genotyping and genome identification tools New phenotyping methods (high speed, non destructive) Adaptation of populations and durability of resistance | | | Complementary research areas Knowledge of the molecular mechanisms of plant-bioaggressor interactions Knowledge of the bioaggressors and epidemic mechanisms Strategies and methods for management of the biotic stresses in agro-ecosystems Conservation based selection and quality of seeds | # Plant breeding - The main research areas #### **2nd TECHNOLOGICAL CHALLENGE** To adapt varieties to the abiotic stresses, especially climate change | Synopsis | Research areas | |---|---| | To modify and adapt varieties: increasing their flexibility towards fluctuations (soil, water, temperature) | Understanding of the physico-chemical mechanisms governing the interaction between the plant and its aerial and root environment Tolerance, protection and regulation mechanisms for abiotic stresses and survival when dry (seed drought tolerance and longer life) and modelling of germination and sprouting Measuring and predicting the impact on the plant of variations due to climate (global warming) or the urban environment (modelling) Design of ideotypes = variety + suitable methods of cropping | ## Plant breeding The main research areas #### **3rd TECHNOLOGICAL CHALLENGE** To identify and select high-quality, original characteristics appealing to producers, processors, distributors/marketers and consumers | Synopsis | Research areas | |--|--| | To create high-quality varieties suitable for: – the stresses of the cultivation, marketing and processing systems (technological quality, conservation) | Characterisation of the plant
metabolites and their properties | | consumer demand (originality, appearance, taste, aroma) the health and well-being needs of people and animals (substances of nutritional value) and plants (molecules of crop protection value) due to their wealth of active | Impact of the environment on
expression of the product quality
characteristics | | principles – the development of new uses and markets | Socio-economic study of the impact
of the development of new markets
or channels | ## Plant breeding - The main research areas #### Research areas common to these three challenges - Characterisation and management of the genetic resources: analysis of the genetic determinism of the characteristics of value and localisation of the genes controlling these characteristics - Development of innovative aids to selection of new varieties including: marker-assisted selection and genome selection - Conservation-based selection and quality of seeds ## Plant breeding - The main research areas #### 4th TECHNOLOGICAL CHALLENGE To optimise the variety creation processes through the development of integrative approaches | Synopsis | Research areas | |--|---| | To optimise the variety creation processes through a total data integration approach | Study of the physiological and molecular mechanisms involved in the expression, regulation and interaction of the characteristics of value Development of new data processing algorithms Data modelling and ideotype prediction | # Plant breeding - Identification of bottlenecks | TECHNOLOGY and METHODOLOGY | | | | | |--|---|---|---|---| | | 1 st challenge:
« Resistance to
bio-
aggressors » | 2 nd challenge:
« Environmental
stresses » | 3 rd challenge:
« Quality/
originality » | 4 th challenge:
«Integrative
approaches» | | Create genetic variability | X | Х | Х | | | Identify the genetic bases of the characteristics of interest and their heredity | X | X | X | | | Design new genotyping and genome identification tools | X | Х | X | | | Design new phenotyping methods (high speed, non destructive) | X | X | X | | | Manage and process large volumes of different data (quality and quantity) | X | Х | X | X | # The strengths of VEGEPOLYS for plant breeding projects ### Plant breeding -Local resources in research | RESEARCH STRENGTHS | | Challenges | | | | |---|---|------------------------------|---|-------------------------------|--| | | | 2 « Environmental stresses » | 3
« Quality/originalit
y » | 4 « Integrative approaches » | | | Angers -IRHS (Institute Horticulture and Seed Research) INRA/Agrocampus-ouest/ University of Angers | X | X | X | Х | | | Rennes - IGEPP (Institute of Genetics, Environment and Plant Protection), INRA/Agrocampus-ouest/ University of Rennes | Х | X | X | X | | | Nantes - LBPV (Laboratory of Biology and Vegetable Pathology) University of Nantes | X | | | | | | Angers - GEVES: SNES (National Seed Testing Station) and SEV (Evaluation Service of Varieties) | X | X | X | | | | Angers - LEVA (Laboratory of Vegetable and Agro ecology Ecophysiology); ESA | | X | | | | | Angers – UP EPHOR (Physical Environment of the Horticultural Plants) West Agro campus INHP | | X | X | | | | ITEIPMAI (Inter-professional Technical Institute of Perfumed, Medical and Aromatic Plants) | X | X | X | | | | Nantes - UR BIA (Biopolymers Interactions Assemblies) - INRA | | | X | | | | Angers -SONAS Laboratory (Substances of Natural Origins and Analogical Structures) - University of Angers | | | X | | | | Angers - GRAPPE (Research group in agro alimentary of products and processes) - ESA | | | X | | | | Angers – LISA – University of Angers | X | X | X | X | | | Angers – LAREMA (Angevin Laboratory of Mathematical Research) –University of Angers | | | | X | | | Angers - VEGEPOLYS INNOVATION | Х | X | X | | | | Bretagne - Végénov - BBV | X | X | X | | | | Angers – UVV (Vine and Wine Unity), INRA | X | X | X | | | | Cée – IFPC (French Institute of Cider Productions) | X | X | X | | | | Centre – CDHR (Astredhor Network) | X | X | X | | | | CTIFL (Inter-Professional Technical Center of Fruit and Vegetables) | X | X | X | | | | Saumur – CTC (Technical Center of Mushrooms) | X | | X | | | | Le Mans - FNPC (National Federation of Hemp Producers) | | | X | | | ### Plant breeding -Local resources "enterprises" | ENTERPRISE TYPES | MEMBERS OF VEGEPOLYS | | | |---------------------------------|---|---|--| | Vegetable/flower seed companies | HM - Clause Vilmorin Syngenta Gautier Technisem Bejo Enza Zaden | Gautier semences Graines Voltz Interseed Plan ornemental UCA OBS A.Ducrettet | | | Other seed companies | Limagrain
Jouffray Drillaud
Florimond-Desprez | Sylvan Somycel
Agriobtention | | | Ornamental production | Minier Melba Hydranova Eurogeni Florinov André Briand jeune plant Barrault Horticulture Boos hortensia Chauvin diffusion Pierre Turc Ernest Turc production Saulais | Gaignard Fleurs Hortensia France Production Les Agrumes de Méditerranée Les serres du Lodevois Malinge horticulture Morel Diffusion Pép. et roseraies Georges DELBARD Pép. Nicolandes Pép. Renault Sapho Production SICAMUS | | | Agricultural cooperatives | Fleuron d'Anjou
Maraichers nantais | Rosée des Champs
Coop. producteurs de semences de chanvre | | | Fruit selection companies | CEP innovation GIE IFO Davodeau Ligonnière Fraise concept | Mondial Fruit selection
Selection new plant | | #### "Plant in #### **FruitBreedomics:** European research project co-financed by the 7thFP. Aim: To improve the efficiency of fruit breeding by bridging the gap between scientific genetic research and application in breeding. **BRIO**: Breeding, Research and Innovation on Ornamentals: "FUI" project with 18 companies small to medium size. Development of an innovative decision-making tool and integration in the variety creation strategy of enterprises in the ornamental sector #### **Carot Pigments:** Cooperative project funded by the regional council. Study of the pigment diversity of the carrot for the development of new varieties focussing on their nutritional qualities #### Radiallis: project funded by the regional council with 3 seed companies and producers. Research on mildew resistance in the radish #### **Quality legseed:** Academic research project funded by ANR. An integrated approach using Medicago truncatula to identify key genes controlling nutritional and physiological quality of vegetable #### **QUALISEM:** Academic research project funded by the region council Integrative approach to determination of the physiological and health quality of the seeds #### **COSI-VEG:** Academic research project funded by the regional council. Innovative Cognitive and Sensory Methodologies suitable for the enhancement of Plant material **CVP**: Breeding on vegetables: "FUI" project with 2 seed companies. Research on genes resistant to carrot alternaria edo ΓR # Plant breeding - Projects for the future #### **IDEAS** - Project currently being set up which includes the components: research, training and innovation: « Multi-scale phenotyping aimed at sustainable management of horticulture plant health" - Genome Sequencing and Resequencing of orphan plant species - Development of new phenotyping tools (development of dedicated platforms or transfer/development in the enterprises) - Development of new selection methodologies or new selection tools (e.g.: transcriptomics) - Improving the germinative quality of the seeds to tolerate the stresses associated with climate change and the reduction in phytosanitary products - Creation of new products (diversification) in order to develop new markets - Evolution of varieties for new uses ### Collaborative project « Legtyp » # Varietal innovation in vegetables typical of Anjou 3 years' research from 2007 to 2009 With financial support from the Pays de la Loire Regional Council and the State ### The partner enterprises ### **Cooperatives:** ### **Breeders:** #### From idea to concrete realisation #### Context: - "Orphan" produce - Players with the will to work on specific vegetable varieties (typical of the area) - Growing interest in traditional produce on the part of the consumer - A favourable relationship network and Végépolys as facilitator of innovative cooperative projects #### From idea to concrete realisation ### **Objectives:** • On shallots: new varieties better suited to the production area (e.g.: fusariosis tolerance) and more diverse (white and grey shallots). Establishment of a variety repository. - On Jerusalem artichokes: new varieties adapted to the 21st century and suitable for the 5th range. - On "Cornet d'Anjou" chicory: identify varieties suitable for the 4th range and having a longer production period. ### The shallot in Anjou <u>Échalotes</u> Traditionnelles At Fleuron d'Anjou: 200 ha planted 40 operations 3000 tonnes The only certification of a traditional long shallot. ### The partners in the "shallot" programme **Breeding Variety repository** **Laboratory pathology studies** **Experimentation in tunnels and greenhouses** ### **Advanced research** - In the field: Experimental sites on the farms - In the laboratory / greenhouse: Work carried out in the University of Angers laboratories and the INH greenhouses. ### On shallots Evaluation at the end of the 3rd year - Variety creation process under way - Prospect of obtaining varieties resistant to the main parasites found in Anjou - Several improved varieties already recorded and accompanied by a registration and production plan. #### Concrete result: **MELKIOR**, the first programme-based variety to be registered in the catalogue (mildew resistant; certified organic) #### Initial "shallot" budget 207,000€ The "Legtyp" provisional budget for the three years was **312,350** €. After completion of the study, it was exceeded by + 11%. # Financing of the total costs ### The Jerusalem artichoke in Anjou ## 1st place in France on the fresh produce market More than 60 ha in Maine et Loire of which Fleuron d'Anjou : 35 ha 15 farms 600 tonnes ### Jerusalem artichoke Evaluation at the end of the 3rd year Selection from about twenty cultivars of three separate clones of the purple type With interesting behaviour in production and processing for 5th range. ## Cornet d'Anjou 1st place in France... ### Cornet d'Anjou chicory Evaluation at the end of the 3rd year - Already some promising lines - Sensory analysis of the lines to understand consumer expectations - Important selection work still has to be carried out (acquisition of chemical descriptors essential) to plan registration of the first varieties within 3 to 4 years.